
Breakpoint Shenanigans
(bps)

Kevin Sheldrake
rtfc.org.uk

http://rtfc.org.uk

Breakpoint Shenanigans - Kevin Sheldrake

WTF?
• bps is a tool to set and manipulate breakpoints.

• It is essentially a debugger based on the linux ptrace()
function/framework (like gdb).

• Unlike gdb, it is non-interactive so it can keep up with time-
critical processes.

• bps is controlled from command-line arguments and, in the
future, a configuration file.

• Unlike writing your own code, bps already works (subject to
terms and conditions, ymmv, /home is at risk, etc).

Breakpoint Shenanigans - Kevin Sheldrake

What’s a breakpoint?

• To understand breakpoints, we really need to understand
programming.

• To understand programming, we really need to understand
assembler.

• To understand assembler, we really need to understand
machine code and processor architectures.

• (sorry)

Breakpoint Shenanigans - Kevin Sheldrake

Processors

RAM

CPU

Registers ALU

PC SP

Data

Clock

Control

Address

Status

Breakpoint Shenanigans - Kevin Sheldrake

Processes

Code
Heap:

malloc()
free()

Stack:
push
pop

PC SP

Reg

Reg

Reg n

Address

Breakpoint Shenanigans - Kevin Sheldrake

Exceptions
good instruction
good instruction
good instruction
bad instruction!
good instruction

addr+0
addr+1
addr+3
addr+4
addr+5

PC

KernelInterrupt

Process

addr+200
addr+201

signal handler
…

Signal

Breakpoint Shenanigans - Kevin Sheldrake

Enter ptrace()
good instruction
good instruction
good instruction
bad instruction!
good instruction

addr+0
addr+1
addr+3
addr+4
addr+5

PC

KernelInterrupt

Process

addr+200
addr+201

signal handler
…

Signal

Debugger:
ptrace()

Control

R/W

Signal

Breakpoint Shenanigans - Kevin Sheldrake

Bad instructions
• TRAP:

• 0xCC on x86. (PC := location of TRAP opcode + 1)

• Causes SIGTRAP (5).

• Illegal opcode:

• 0xE7FFFFFF on ARM.

• 0xDEFF on Thumb.

• Choose your own from the processor spec.

• Causes SIGILL (4).

Breakpoint Shenanigans - Kevin Sheldrake

ptrace()
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <sys/user.h>
…
child = fork();
if (child == 0) {
 ptrace(PTRACE_TRACEME, 0, NULL, NULL);
 execve(cmd, args, env);
} else if (child > 0) {
 exe = waitpid(-1, &status, __WALL);
 …
 ptrace(PTRACE_CONT, exe, NULL, signal);
 exe = waitpid(-1, &status, __WALL);
 ptrace(PTRACE_GETREGS, exe, NULL, ®s);

Breakpoint Shenanigans - Kevin Sheldrake

Breakpoints
• fork()

• child - ptrace(PTRACE_TRACEME) && execve()

• waitpid() receives SIGTRAP from child.

• breakopcode = (breakaddr).

• (breakaddr) = TRAP/ILL opcode.

• ptrace(PTRACE_CONT). Child runs until breakpoint.

• waitpid() receives SIGTRAP/SIGILL.

• (breakaddr) = breakopcode.

Breakpoint Shenanigans - Kevin Sheldrake

Breakpoints /cont
• Interact with process - ptrace(PTRACE_{GET|SET}REGS),

ptrace(PTRACE_{PEEK|POKE}TEXT).

• Single step - ptrace(PTRACE_SINGLESTEP) or your own
implementation.

• waitpid() receives SIGTRAP/SIGILL.

• (breakaddr) = TRAP/ILL opcode.

• ptrace(PTRACE_CONT). Child runs until breakpoint.

• waitpid() receives SIGTRAP/SIGILL.

• …

Breakpoint Shenanigans - Kevin Sheldrake

bps
• CLI debugger, non-interactive. Command line specifies:

• Executable to run, with arguments.

• Breakpoint function names or addresses.

• Registers and memory locations to display on traps.

• Breakpoints to enable/disable on traps.

• Number of times each breakpoint can fire.

• An optional initial breakpoint on which to set up the
specified breakpoints.

Breakpoint Shenanigans - Kevin Sheldrake

Example
$ test/hello5
calling newfn
This is newfn: 5
after newfn
strfn, msg(0x8048813)='hello', msg2(0x804880b)='goodbye'
output(0x8552008) = 'hello - goodbye'
strfn returned 'hello - goodbye'
hello world
!
$./bps.0.3 -f strfn -R esp:w:16 -R esp:S:4 -R esp:S:8 -- test/hello5
calling newfn
This is newfn: 5
after newfn
breakpoint 1: strfn (0x804859f)
 register pointers:
 esp+0x0:
 00000000 0804868f 08048813 0804880b b754ebe0
 00000010 0804873b 00000001 bfc49fd4 00000005
 00000020 08048713 bfc49f40 b76d4000 00000000
 00000030 b7537e5e 00000000 08048420 00000000
 (esp+0x4) hello
 (esp+0x8) goodbye
strfn, msg(0x8048813)='hello', msg2(0x804880b)='goodbye'
output(0x837d008) = 'hello - goodbye'
strfn returned 'hello - goodbye'
hello world

Breakpoint Shenanigans - Kevin Sheldrake

Crazy successes

• Multi-thread, multi-process executables work well.

• Own implementation of arm_singlestep() appears to work
correctly for ARM and Thumb modes on ARMv4-ARMv6
(ARM7-ARM11).

• Compiles on 32bit x86 and ARMv6.

• Learned a lot about ptrace() and ARM assembler.

Breakpoint Shenanigans - Kevin Sheldrake

Immediate plans
• Port to MIPS32 little-endian (and maybe big-endian).

• Permit registers to be used as parameters to buffer specs.

• Tainting of registers and buffers.

• Conditional breakpoints.

• Configuration file to supply options.

• Option to run executable as different user/group.

• Produce libbps and app template for more exotic uses.

• Port to ARMv7 (Thumb2) and x86 64bit.

Breakpoint Shenanigans - Kevin Sheldrake

Tips
• Not everything is in the ptrace() manual page.

• No PTRACE_SINGLESTEP on ARM or MIPS.

• No TRAP instruction on ARM - use illegal opcode instead.

• Use Raspberry Pi as dev platform for ARMv6.

• Use Creator CI20 as dev platform for MIPS32.

• Forking and threading expands the problem.

• Porting is an interesting challenge.

Breakpoint Shenanigans - Kevin Sheldrake

Usage
bps - Breakpoint Shenanigans - v0.3 K Sheldrake !
Automatically display interesting info on breakpoints. !
bps -l exe - list functions in exe
bps <options> -- exe [arg1 [arg2 ...]] - run exe with breakpoints !
 -z/-Z - enable/disable copy of breakpoints on fork
 (initial configuration)
 -y/-Y - ditto for new threads
 -G - breakpoint enable/disable affects all processes
 (default is to only affect process trapped on)
 -b init break fn | -B init break address - optionally specify an initial breakpoint
 at which to enable the real breakpoints
 -T - initial breakpoint is thumb (arm only)
 -I - establish breakpoints on all processes on initial
 breakpoint
 -f function name | -F address - specify a breakpoint
 -t - specify thumb rather than arm (arm only)
 -r register - register to display
 -R register:format[:size][:offset] - register buffer to display
 -A address:format[:size][:offset] - address buffer to display
 -c count - number of times to trap
 -D - disable breakpoint on launch
 -k - kill exe after count traps
 -e breakpoint number - breakpoint to enable after count traps
 -d breakpoint number - breakpoint to disable after count traps
 -z/-Z - enable/disable copy of breakpoints on
 following forks
 -y/-Y - ditto for new threads
 -g - reverse effect of -G for following enable/disable
 options for this breakpoint - if -G specified, then
 -g makes following options local, and vice versa
 -o - send output to stderr rather than stdout
 -p pipe for output - send output to named pipe rather than stdout,
 for times when stderr isn't far enough away
 -v - verbose; use multiple times for extra info
 -- exe [arg1 [arg2 ...]] - command line to run

Breakpoint Shenanigans - Kevin Sheldrake

Any questions?
In Thumb, can a

MOV to $pc cause

a switch to ARM

mode?

Can you debug

a debugger?

Why didn’t you

write it in

perl or

python?

Can you

quickly

describe

your

data

structures?
* Please note, Macbook Air is for pictorial purposes only.

I haven’t even tried to compile it on OS X yet.

*

