Breakpoint Shenanigans
(bps)

Kevin Sheldrake
rtfc.org.uk

http://rtfc.org.uk

WTFE?

bps is a tool to set and manipulate breakpoints.

It is essentially a debugger based on the linux ptrace()
function/framework (like gdb).

Unlike gdb, it is non-interactive so it can keep up with time-
critical processes.

bps is controlled from command-line arguments and, in the
future, a configuration file.

Unlike writing your own code, bps already works (subject to
terms and conditions, ymmyv, /home is at risk, etc).

Breakpoint Shenanigans - Kevin Sheldrake

What's a breakpoint”

To understand breakpoints, we really need to understand
programming.

To understand programming, we really need to understand
assembler.

To understand assembler, we really need to understana
machine code and processor architectures.

(sorry)

Breakpoint Shenanigans - Kevin Sheldrake

Processors

Address

22 | Rrav

lock
o0 Cloc

Status Control
Gl

Breakpoint Shenanigans - Kevin Sheldrake

Processes

AJAreSS m—— e

Reg| n

Breakpoint Shenanigans - Kevin Sheldrake

Exceptions

Process

addr+0 good instruction

addr+1 good instruction 6“\)9’\
addr+3 good 'qstmct'my
addr+4 bad instruction

addr+5 good instruction

addr+200 signal handler
addr+201

Breakpoint Shenanigans - Kevin Sheldrake

Enter ptrace()

Process

addr+0 good instruction

addr+1 good instruction e

. . o
addr+3 good instruction |\ Kernel
addr+4 bad instruction

addr+5 good instruction

C
O
/7//0/
PN
addr+200 signal handler
addr+201
> TCLLTTTY
Signal

Breakpoint Shenanigans - Kevin Sheldrake

Bad Instructions

* TRAP:
* OxCC on x86. (PC := location of TRAP opcode + 1)
* Causes SIGTRAP (5).
* lllegal opcode:
* OXE7FFFFFF on ARM.
* OxDEFF on Thumb.

* Choose your own from the processor spec.

 (Causes SIGILL (4).

Breakpoint Shenanigans - Kevin Sheldrake

ptrace()

#include <sys/ptrace.h>
#include <sys/wait.h>
#include <sys/user.h>

child = fork();

if (child == 0) {
ptrace(PTRACE_TRACEME, O, NULL, NULL);
execve(cmd, args, env);

} else if (child > 0) {
exe = waltpid(-1, &status, _ WALL);

ptrace(PTRACE_CONT, exe, NULL, signal);
exe = waitpid(-1, &status, _ WALL);
ptrace(PTRACE_GETREGS, exe, NULL, ®s);

Breakpoint Shenanigans - Kevin Sheldrake

Breakpoints

fork()

child - ptrace(PTRACE_TRACEME) && execve()
waitpid() receives SIGTRAP from child.
breakopcode = (breakaddr).

(breakaddr) = TRAP/ILL opcode.
ptrace(PTRACE_CONT). Child runs until breakpoint.
waitpid() receives SIGTRAP/SIGILL.

(breakaddr) = breakopcode.

Breakpoint Shenanigans - Kevin Sheldrake

Breakpoints /cont

Interact with process - ptrace(PTRACE_{GET|SET}REGS),
ptrace(PTRACE_{PEEK|POKE}TEXT).

Single step - ptrace(PTRACE_SINGLESTEP) or your own
implementation.

waitpid() receives SIGTRAP/SIGILL.

(breakaddr) = TRAP/ILL opcode.
ptrace(PTRACE_CONT). Child runs until breakpoint.
waitpid() receives SIGTRAP/SIGILL.

Breakpoint Shenanigans - Kevin Sheldrake

OPS

CLI debugger, non-interactive. Command line specifies:

Executable to run, with arguments.

Breakpoint function names or addresses.

Registers and memory locations to display on traps.
Breakpoints to enable/disable on traps.

Number of times each breakpoint can fire.

An optional initial breakpoint on which to set up the
specified breakpoints.

Breakpoint Shenanigans - Kevin Sheldrake

Example

$ test/hello5

calling newfn

This is newfn: 5

after newfn

strfn, msg(0x8048813)='hello', msg2(0x804880b)='goodbye'
output(©0x8552008) = 'hello - goodbye'

strfn returned 'hello - goodbye'

hello world

$./bps.0.3 -f strfn -R esp:w:16 -R esp:S:4 -R esp:S5:8 —- test/hellob
calling newfn
This is newfn: 5
after newfn
breakpoint 1: strfn (0x804859f)
register pointers:
esp+0x0:
00000000 0804868f 08048813 0804880b b754ebe0
00000010 0804873b 00000001 bfc49fd4 00000005
00000020 08048713 bfc49f40 b76d4000 00000000
00000030 b7537e5e 00000000 08048420 00000000
(esp+0x4) hello
(esp+0x8) goodbye
strfn, msg(0x8048813)='hello', msg2(0x804880b)='goodbye'
output(©0x837d008) = 'hello - goodbye'
strfn returned 'hello - goodbye'
hello world

Breakpoint Shenanigans - Kevin Sheldrake

Crazy successes

Multi-thread, multi-process executables work well.

Own implementation of arm_singlestep() appears to work
correctly for ARM and Thumb modes on ARMv4-ARMvE
(ARM7-ARM11).

Compiles on 32bit x86 and ARMVvG.

Learned a lot about ptrace() and ARM assembler.

Breakpoint Shenanigans - Kevin Sheldrake

Immediate plans

Port to MIPS32 little-endian (and maybe big-endian).

Permit registers to be used as parameters to bufter specs.

Tainting of registers and bufters.

Conditional breakpoints.

Configuration file to supply options.

Option to run executable as different user/group.

Produce libbps and app tem

nlate for more exotic uses.

Port to ARMv7 (Thumb?2) ano

X860 64Dbit.

Breakpoint Shenanigans - Kevin Sheldrake

T1ps

Not everything is in the ptrace() manual page.

No PTRACE_SINGLESTEP on ARM or MIPS.

No TRAP instruction on ARM - use illegal opcode instead.
Use Raspberry Pi as dev platform for ARMv6.

Use Creator Cl20 as dev platform for MIPS32.

Forking and threading expands the problem.

Porting Is an interesting challenge.

Breakpoint Shenanigans - Kevin Sheldrake

Usage

bps — Breakpoint Shenanigans - v@.3 K Sheldrake

Automatically display interesting info on breakpoints.

bps -1 exe - list functions in exe
bps <options> —- exe [argl [arg2 ...]] - run exe with breakpoints
-z/-2Z — enable/disable copy of breakpoints on fork
(initial configuration)
-y/-Y — ditto for new threads
-G - breakpoint enable/disable affects all processes
(default is to only affect process trapped on)
-b init break fn | -B init break address — optionally specify an initial breakpoint
at which to enable the real breakpoints
-T - initial breakpoint is thumb (arm only)
-I — establish breakpoints on all processes on initial
breakpoint
—f function name | -F address - specify a breakpoint
-t - specify thumb rather than arm (arm only)
-r register - register to display
-R register:format[:size] [:offset] - register buffer to display
-A address:format[:size] [:offset] - address buffer to display
—-C count - number of times to trap
-D — disable breakpoint on launch
-k - kill exe after count traps
—e breakpoint number — breakpoint to enable after count traps
—-d breakpoint number — breakpoint to disable after count traps
-z/-Z — enable/disable copy of breakpoints on
following forks
-y/=Y - ditto for new threads
-qg - reverse effect of -G for following enable/disable

options for this breakpoint - if -G specified, then
—-g makes following options local, and vice versa

-0 - send output to stderr rather than stdout

-p pipe for output - send output to named pipe rather than stdout,
for times when stderr isn't far enough away

-V - verbose; use multiple times for extra info

—— exe [argl [arg2 ...]] - command line to run

Breakpoint Shenanigans - Kevin Sheldrake

Any questions”

In Thumb, can a

Can you debug MOV to $pc cause
a debugger? ~ a switch to ARM
mode?

Why didnt you

write it in . Can you
verl or ‘ quickly
python? : describe

your
data
* Please note, Macbook Air is for pictorial purposes only.
| haven't even tried to compile it on OS X yet. structures?

Breakpoint Shenanigans - Kevin Sheldrake

